宁波力隆机电股份有限公司

碳足迹报告

2023年度

产品名称:不锈钢梯级

产品型号: TJ1000OTIS-B

核查机构名称: 浙江宏纪能源环境科技有限公司

核查报告签发日期: 2024年4月29日

1

目 录

1 概述	1
1.1 企业基本情况	1
1.2 研究目的 2	2
1.3 范围	2
1.4 准则	3
2 过程和办法	3
2.1 文件评审	3
2.1.1 策略分析 3	3
2.1.2 风险评估	4
2.2 现场评审	4
2.3 分配原则 5	5
2.4 数据取舍规则	5
2.5 数据质量要求	6
2.6 软件和数据库	6
2.7 影响类型和评价方法	7
3数据收集	8
3.1 数据收集方法	
3.2 产品过程基本信息描述	
3.2.1 产品生产工艺 {	8
3.2.2 产品信息10	C
4产品生命周期清单数据10	J
4.1 原材料获取及生产10	
5 生命周期影响分析 1	
6结果解释	
6.1 重大问题的识别15	
6.2 完整性、敏感性、不确定性和一致性检查1	
6.2.1 完整性检查15	
6.2.2 敏感性分析15	
6.2.3 不确定性分析16	
6.2.4 一致性分析16	
7结论16	
8 局限性和建议	7

1概述

1.1 企业基本情况

宁波力隆机电股份有限公司宁波力隆机电股份有限公司成立于 1995年12月26日,企业租赁宁波华夏一品电梯有限公司位于浙江省 宁波市北仑区小港安居路228号9幢1号的厂房进行生产经营,是一家 集电梯零部件研发、设计、生产、销售及售后于一体的现代化综合型 电梯部件制造服务商。公司引进了国内外先进的技术和设备,拥有通 过国家认证的独立的检测中心,并在日本建立了专业技术研究所。

公司拥有两百余项自主知识产权和技术专利,技术、研发和生产 实力均位居行业前列,与三菱、奥的斯、通力、蒂森、日立、永大、 现代等国内外知名品牌客户建立了长期的战略合作伙伴关系,陆续为 他们提供 OEM 和 ODM 服务及电梯解决方案。

公司牢牢把握时代发展的潮流,围绕广大客户的需求,拥有强大的技术团队以及设计团队,可及时对产品性能以及整体外观做系统升级,确保产品符合大众多样化的个性需求,让产品在客户的市场竞争中保持竞争力。

多年来,公司先后获得"宁波市企业工程技术中心"、"省高新技术企业研究开发中心"、"中国电梯协会副会长单位"、"高新技术企业"、"安全生产标准化市级企业"、"优秀供应商"、"技术创新奖"等多项殊荣。

企业已通过 ISO 9001: 2015 质量管理体系、ISO 14001: 2015 环境管理体系及 ISO 45001: 2018 职业健康安全管理体系认证。

1.2 研究目的

本研究的目的是得到宁波力隆机电股份有限公司的不锈钢梯级产 品全生命周期过程的碳足迹,为宁波力隆机电股份有限公司开展持续 的节能减排工作提供数据支撑。

碳足迹核算是宁波力隆机电股份有限公司实现低碳、绿色发展的基础和关键,披露产品的碳足迹是环境保护工作和社会责任的一部分,也是迈向国际市场的重要一步。本项目的评价结果将为采购商和第三方的有效沟通提供良好的途径,对促进产品全供应链的温室气体减排具有一定积极作用。

本项目评价结果的潜在沟通对象包括两个群体:一是臻至的内部管理人员及其他相关人员;二是企业外部利益相关方,如上游主要不锈钢梯级钢等的供应商,下游的使用客户等。

研究获得的数据信息还可用于以下目的:

- 产品生态设计/绿色设计;
- 同类产品对比;
- •绿色采购和供应链决策;
- 申报绿色工厂。

1.3 范围

根据本项目评价目的,按照 ISO/TS 14067:2018《温室气体一产品的碳排放量一量化的要求和指南》、PAS 2050:2011《商品和服务在生命周期内的温室气体排放评价规范》的相关要求,本次碳足迹评价的边界为宁波力隆机电股份有限公司 2023 年 1-12 月期间生产活动及非生产活动数据的碳足迹。本次评价边界为:产品的碳足迹=原材料获取+产品生产+废料处理。

1.4 准则

- 1) ISO 14064-3; 2019 温室气体——温室气体声明审定与核查规范及指南;
 - 2) ISO/TS 14067:2018 温室气体产品碳足迹量化的要求和指南;
 - 3) ISO14040:2006 环境管理生命周期评价原则与框架;
 - 4) ISO14044:2006 环境管理生命周期评价要求与指南;
 - 5) PAS 2050 商品和服务的生命周期温室气体排放评价规范;
 - 6) 其他有关标准化团体或协议规定的准则。

2过程和办法

2.1 文件评审

2.1.1 策略分析

确保核查活动能够实现核查目的,策略分析的内容包括如下:

- a) 约定的保证等级、重要性、准则、目标和范围;
- b) 产品及其测量/监测过程的复杂性;
- c) 利益相关方、责任方、客户和目标用户之间的组织关系及相互作用;
 - d) 组织环境,包括开发和管理产品GHG声明的组织结构;
 - e) 生命周期解释的结果,包括结论和限制性;
 - f) 功能单元;
 - g) 生命周期阶段;
 - h) 取舍。

经过策略分析,审核组确认信息如下:

- a) 本次核查满足约定的保证等级、重要性、准则、目标和范围;
- b) 产品及其测量/监测过程较为简单;

- c) 产品生命周期评价的边界为: 从原材料获取、运输到产品的生产、测试、出厂;
 - d)本次见"2.4.数据取舍规则"。

2.1.2 风险评估

本次评价活动基于 ISO/TS 14067:2018《温室气体一产品碳足迹一量化的要求和指南》、PAS 2050:2011《商品和服务在生命周期内的温室气体排放评价规范》的相关要求,对受评价方 2023 年期间生产 1 台不锈钢梯级的生产活动及非生产活动碳足迹进行评价,受核查企业组织边界范围明确。

此次评价采用的取舍规则以各项原材料投入占产品重量或过程总投入的重量比为依据。评价结果满足总共忽略的物料重量不超过5%的要求。

2.2 现场评审

评价组根据评价计划开展了2天的现场评价,实施了首末次会、文件评审和现场评价等活动,并对不同评价活动进行了组内分工:

表 2-3 现场评价发现表

序号	主要评价内容	评价发现
1	对组织 GHG 管理活动相关政策、规则、程序的运行情况的评价; 1) 边界确定 2) 功能单元的确定 3) 生命周期阶段的确定 4) 排放源识别 5) 内部质量控制活动 6) GHG 排放的核算与报告	1.此次评价的边界为宁波力隆机电股份有限公司 2023 年 1-12 月期间生产 1 台不锈钢梯级的生产活动及非生产活动数据的碳足迹(不包括产品及其他固体废弃物交付于下游客户的排放); 2.此次评价的功能单元确定为:生产 1 台不锈钢梯级; 3.生命周期阶段的确定为从原材料生产到大门; 4.排放源为产品的生产部分; 5.企业建立有完整的物料采购制度、统计报表制度,并指定专门人员负责; 6.企业无核算报告。
2	对 GHG 信息管理系统控制进行评价;	查阅并确认如下信息完善: 1.营业执照、公司组织架构图、工艺流程图;
	1) 查阅被评价单位基本信息	2.主要用能设备清单;

序号	主要评价内容	评价发现
	2)查阅设备设施台账 3)查阅设备运行记录 4)查阅产品生产情况台账 5)查阅管理活动记录 6)检查GHG信息流 7)检查记录的保存	3.企业生产统计报表; 4.数据信息采集表。
2	对 GHG 信息和数据进行评价; 1) 查阅各 GHG 排放源排放量核算相关的活动数据的数据源 2) 查阅各 GHG 排放源排放量核算相关的排放因子的数据源 3) 对 GHG 排放量进行验算	1.GHG 排放数据源来源于企业数据信息采集表及现场收集; 2.排放量的计算采用 SimaPro 软件计算得出,计算结果由 efootprint.net 平台验证。
3	查看现场: 1) 针对设备设施清单,查看各类设备设施、计量设备,访谈工作人员,对原始数据的产生进行评价	1.现场对企业生产的各主要设备与设备清单核对,并与企业生产人员及物资物料采购人员交流确认; 2.通过访谈及现场查验,企业生产的关键设备与企业用能设备清单一致。

2.3 分配原则

许多过程常不止一个功能或输出,过程的环境负荷需要分配到不同的功能和输出中,ISO相关标准对分配有具体规定,包括:

- 1) 避免分配;
- 2) 以物理因果关系为基准分配环境负荷;
- 3) 使用社会经济学分配基准。本次研究会生产多种规格的产品, 采用物理分配方法,比如产品重量。

2.4 数据取舍规则

本项目采用的取舍规则以各项原材料投入占产品重量或过程总投入的重量比为依据。具体规则如下:

I 普通物料重量<1%产品重量时,以及含稀贵或高纯成分的物料重量<0.1%产品重量时,可忽略该物料的上游生产数据;总共忽略的物料重量不超过5%;

Ⅱ大多数情况下, 生产设备、厂房、生活设施等可以忽略;

III 在选定环境影响类型范围内的已知排放数据不应忽略。本报告 所有原辅料和能源等消耗都关联了上游数据,部分消耗的上游数据采 用近似替代的方式处理,基本无忽略的物料。

2.5 数据质量要求

为满足数据质量要求,在本报告中主要考虑了以下几个方面:

- --数据完整性:依据取舍原则;
- --数据准确性:实景数据的可靠程度;
- --数据代表性: 生产商、技术、地域以及时间上的代表性;
- --模型一致性:采用的方法和系统边界一致性的程度;
- --精度:测量每个数据值的可变性(例如方差)。

2.6 软件和数据库

本次评价过程采用了 SimaPro 软件计算和 eFootprint 模型计算相结合的方式。首先采用软件计算得出结果后,再采用 SimaPro 软件系统,建立了不锈钢梯级生产的生命周期模型,并计算得到 LCA 结果,与软件计算结果相验证。eFootprint 系统是由成都亿科环境科技有限公司研发的在线 LCA 分析软件,支持全生命周期过程分析,并内置了中国生命周期基础数据库(CLCD)、欧盟 ELCD 数据库和瑞士的 Ecoinvent 数据库。

评价过程中用到的数据库,包括中国产品全生命周期温室气体排放系数集(以下简称"系数集")、CLCD和 Ecoinvent 数据库,数据库中生产和处置过程数据都是"从摇篮到大门"的汇总数据,分别介绍如下:

《中国产品全生命周期温室气体排放系数集(2022)》主要基于 ISO/TS 14067:2018《温室气体产品碳足迹量化的要求和指南》的基本 原则和方法,确定产品全生命周期温室气体排放,包括产品上游排放、下游排放、排放环节、温室气体占比、数据时间、不确定性、参考文献/数据来源等信息。

中国生命周期基础数据库(CLCD)由成都亿科环境科技有限公司开发,是一个基于中国基础工业系统生命周期核心模型的行业平均数据库。CLCD数据库包括国内主要能源、交通运输和基础原材料的清单数据集。2009年,CLCD数据库研究被联合国环境规划署(UNEP)和联合环境毒理学与化学协会(SETAC)授予生命周期研究奖。

Ecoinvent 数据库由瑞士生命周期研究中心开发,数据主要来源于瑞士和西欧国家,该数据库包含约4000条的产品和服务的数据集,涉及能源、运输、建材、电子、化工、纸浆和纸张、废物处理和农业活动等。

2.7 影响类型和评价方法

基于研究目标的定义,本研究选择对产品生命周期的全球变暖潜值(Global Warming Potential,GWP)进行分析,因为GWP是用来量化产品"碳足迹"的环境影响指标。

碳足迹量化评价方法的选用考虑方法符合 ISO14067:2018、ISO14040:2006、ISO14044:2006标准的要求,并考虑方法的科学性、特征化因子的可获得性以及方法的适用性,表 2-1 展示了环境影响及评价模型。

表 2-1 环境影响类型及评价模型

环境影响 类型	评价模型	贡献物质	影响类型参数	単位	方法来源	影响类型 特点
气候变化	伯尔尼模型 -100年内的全 球变暖潜值	CO ₂ 、 CH ₄ 、CFC 等	全球变暖潜势 (GWP 100)	kgCO2eq	IPCC2021 GWP 100 (including CO ₂ uptake)v1.02	全球性影响类型

3数据收集

3.1 数据收集方法

为满足对数据质量的要求,确保计算结果的可靠性,本次研究过程中初级数据首选来自宁波力隆机电股份有限公司收集提供。当初级数据不可得时,尽量选择代表区域平均和特定技术条件下的次级数据,如: CLCD 数据库和 Ecoinvent 数据库(这些数据库的数据是经严格审查,并广泛应用于国际上的 LCA 研究)。

3.2 产品过程基本信息描述

3.2.1 产品生产工艺

不锈钢梯级生产过程的基本信息,包括:

- (1) 生产边界: 从原材料获取、产品的生产、测试、出厂
- (2) 数据代表性

主要数据来源:企业生产报表

企业名称: 宁波力隆机电股份有限公司

基准期: 2023年1月1日—2023年12月31日

地理位置: 浙江省宁波市北仑区白云山路 28号

主要原料:冷轧钢板、不锈钢带等

主要能源消耗: 电力

工艺流程主要包括落料、折弯、焊接、涂装、组装等工艺。

图 3-1 不锈钢梯级产品主要生产工艺流程图

主要生产工序介绍如下:

对钢材进行落料(裁剪),得到指定尺寸的坯料,对坯料进行折弯或翻边,得到各零件的形状,通过焊接等方式对各零件进行组合,完成后即形成不锈钢梯级组件的结构,再对其进行涂装,最后对完成涂装的组件进行附属部件的组装。

不锈钢梯级组件主要包括钢板料和作为支撑骨架的梁柱组件两部分。制作过程中,首先利用数控剪板机、激光切割机等设备对钢板进行下料,得到所需的钢板坯料,然后进行裁剪、折弯等作业,得到箱体的外部形状,利用点焊机或保护焊机将折好的板件(箱体外形)与起支撑作用的梁柱件进行焊接、形成箱体类组件的基本结构成型的箱体类组件进行涂装,最后对完成涂装的组件进行附属部件的组装。

主要生产设备如下表:

表 3-1 主要耗能设备清单

序号	设备名称	规格型号	功率(kW)	数量(台)	配套电机
1	单柱液压机	YH-250	10	1	ZZX4-60-41
2	冲床	SC1-110	15	1	YX3-160L-4
3	冲床	GTX-400	37	2	YX3-225S-4
4	博信冲床	BXP-160T	11	2	YE2-160M-4
5	高精度冲床	BXP-250T	18.5	2	YE2-180M-4
6	高精度冲床	BXP-110T	9	2	电机内置
7	高精度冲床	BXP-160T	11	2	电机内置
8	万能液压机	YLM-315	35	3	YE3-160S-4

序号	设备名称	规格型号	功率(kW)	数量(台)	配套电机
9	万能液压机	YLM-200	20	2	YE3-132S-4
10	万能液压机	YLM-200	20	1	YE3-132S-4
11	扬力冲床	SP2-500	42	1	38Н6-Н
12	扬力冲床	HM2-500	45	1	38Н6-Н
13	扬力冲床	GTX-400	30	1	38Н6-Н
14	台式冲床	JA04-0.5T	0.5	1	JLY200L-4 B35
15	单柱液压机	YH-250	4	1	JLY200L-4 B35
16	单柱液压机	YH-250	4	1	JLY2258-4 B35
17	单柱液压机	YH-250	4	1	ZZX4-60-41
18	自动电泳灰色线	非标	250	1	电机内置
19	自动电泳黑色线	非标	250	1	电机内置

3.2.2 产品信息

产品名称:不锈钢梯级

产品型号: TJ1000OTIS-B

图 3-2 TJ1000OTIS-B型不锈钢梯级产品外观图

4产品生命周期清单数据

4.1 原材料获取及生产

宁波力隆机电股份有限公司的生产1件TJ1000OTIS-B型不锈钢梯级产品所需原材料的数据清单如下表:

表 4-1 产品数据清单

序号	原辅材料	重量	单位	材质
1	冷轧钢板(卷料)1.5/DC03	1.15	kg	钢材
2	热轧钢板(卷料)3.8/SPHC	0.19	kg	钢材
3	冷轧钢板 1.5/ST37	1.23	kg	钢材
4	冷轧钢板(卷料) 1.5/ST37-2G	1.39	kg	钢材
5	冷轧钢板(卷料) 1.5/ST37-2G	1.36	kg	钢材
6	冷轧不锈钢带 0.4/SUS430	1.14	kg	钢材
7	冷轧不锈钢带 0.6/SUS430	4.09	kg	钢材
8	冷轧钢板(卷料)1.5/ST37	1.08	kg	钢材
9	冷轧钢板(卷料)2.8/Q235B	0.07	kg	钢材
10	ABSHI-121	0.137	kg	ABS
11	ABSHI-121	0.11	kg	ABS
12	ABSHI-121	0.088	kg	ABS

5 生命周期影响分析

根据本项目各阶段收集的数据资料,在SimaPro软件上建立模型并得出生命特征化结果为35kgCO₂eq/件,如图下图所示:

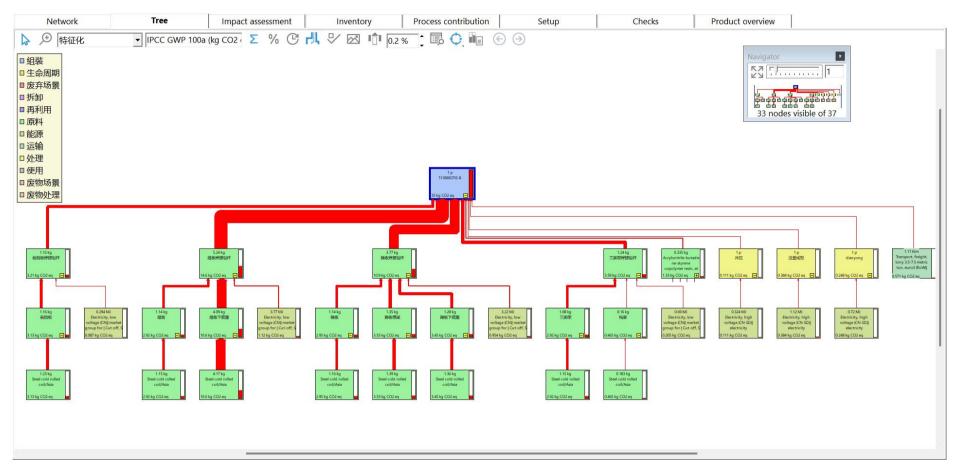


图 5-11件 TJ1000OTIS-B 型不锈钢梯级产品生命周期树状图

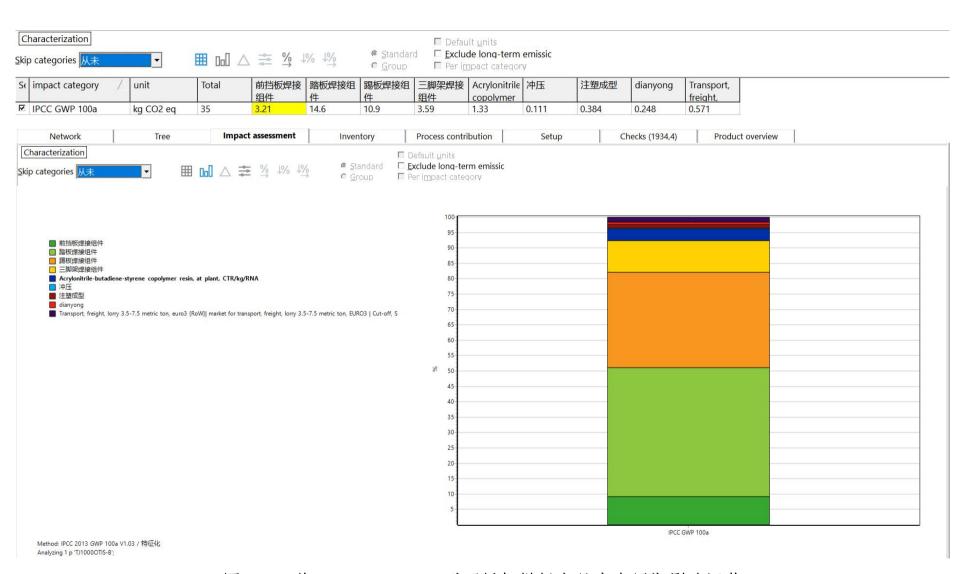


图 5-2 1件 TJ1000OTIS-B 型不锈钢梯级产品生命周期影响评估

表 5-11件 TJ1000OTIS-B 型不锈钢梯级产品碳足迹评价结果

数值 环境类型 单位			数值		
小 况 矢 全	十四	总流程	原材料获取	运输	生产加工
产品碳足迹	kgCO ₂ eq	35	31.525	0.571	2.904

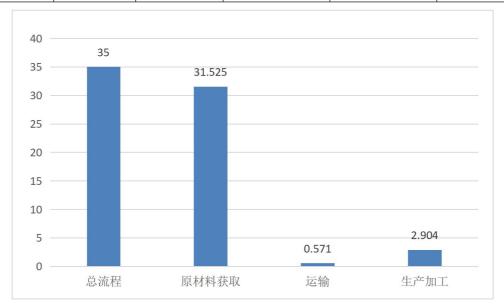


图 5-2 1件 TJ1000OTIS-B 不锈钢梯级碳足迹按种类获取展示(单位: kgCO₂eq)

分析上表可知: 在产品的生产过程中原材料作为产品生产的主要原料供给,它们对于 GWP 指标的贡献较大。

6结果解释

根据 ISO14040:2006、ISO14044:2006、ISO14067:2018 对生命周期 结果解释的要求,该阶段主要包括的内容有:对重大问题的识别,进行完整性、敏感性、不确定性和一致性检查,最后提出结论、局限性和建议。

6.1 重大问题的识别

按照生命周期阶段贡献结果来看,碳足迹主要来自原材料获取过程的碳足迹,工厂可通过相关节能减排措施,采购绿色环保可回收原材料,进而减少碳排放。

6.2 完整性、敏感性、不确定性和一致性检查

6.2.1 完整性检查

按照 ISO14067:2018 的要求,实施了产品从原材料提取到制造、销售和使用的阶段(摇篮到大门, CTW);

本研究界定的系统边界为摇篮到大门。系统边界包括原材料阶段、 产品制造阶段。研究的原始数据包括材料消耗。生命周期模型和分析 方法符合目标和范围定义中的系统边界。

是否包括产品的原材料和能量投入;

所收集的现场特定数据包括生产该产品所需的原材料、能源数据、资源数据和材料的运输数据。原始数据的收集已经完成。

根据完整性检查结果,本研究的生命周期环境影响分析与确定的研究目标一致,原始和辅料数据的收集完整。

6.2.2 敏感性分析

根据 ISO 14044:2006, 敏感性分析的定义是对评估方法和数据选择对 CFP 研究结果影响的系统程序。本次研究不涉及多种评估方法和数据选择, 所以不进行敏感性分析。

6.2.3 不确定性分析

数据质量会带来环境影响的不确定性,为了评估数据质量对结果的不确定性,采用蒙特卡罗模拟方法确定了环境影响的范围,置信区间 95%。

6.2.4 一致性分析

按照 ISO14044:2006 标准的要求,从以下几个方面进行一致性检查:

- 1)产品系统生命周期和不同产品系统之间的数据质量差异与研究的目标和范围一致。
- 2)区域和/或时间差异一致应用:在地理分布上,根据产品原材料来源调查,产品消费的主要原材料集中在中国,但研究使用的数据集大多来自欧盟外地区的平均水平;在地域代表性和实际代表性上存在着差异。在时间表示上,大部分数据集为2023年1-12月平均数据,基本可以代表实际生产水平。
- 3)原始数据涵盖原材料获取、产品生产加工阶段与定义的系统边界一致。
- 4)本研究中所应用的影响评价模型是 IPCC 2021 GWP 100 评价模型,方法的选用主要考虑符合国际标准 ISO14044:2006、ISO14067:2018的要求。

7结论

本研究获得了宁波力隆机电股份有限公司生产1件TJ1000OTIS-B型不锈钢梯级的碳足迹值为35kgCO₂eq。

宁波力隆机电股份有限公司产品生产过程中,碳足迹>0.2%清单贡献识别如下表:

表 7-1 碳足迹 > 0.2%的贡献识别清单

过程名称	碳足迹贡献率(%)
原材料获取	90.07
运输	1.63
生产加工	8.30

在产品的生产过程中原材料作为产品生产的主要原料供给,对于GWP指标的贡献较大,占90.67%;运输占比1.63%,生产加工占比8.30%。

8局限性和建议

CFP是基于LCA方法计算的。ISO 14040 和 ISO 14044 解决了其固有的限制和权衡。这些包括建立功能或声明的单元和系统边界、适当数据源的可用性和选择、分配程序和关于运输、用户行为和报废情景的假设。某些所选数据可能仅限于特定地理区域(例如国家电网)或可能随时间变化。还需要价值选择来模拟生命周期。这些方法上的限制会对计算结果产生影响。因此,量化 CFP 的准确性有限,也难以评估。

根据本次研究结论,提出降低产品碳足迹的建议如下:

- 1) 寻求新的绿色低碳原辅料,扩充更优质的供应商;
- 2) 对仪器设备定期维护保养,及时更换高能耗设备,降低设备的能耗输出:
- 3) 可采用运输距离较近的原材料,同时优化生产工艺,在企业可行的条件下,降低物料消耗,也可以一定程度地减少产品的碳足迹;
- 4)继续推进绿色低碳发展意识,坚定树立企业可持续发展原则,加强生命周期理念的宣传和实践。运用科学方法,加强产品碳足迹全过程中数据的积累和记录,定期对产品全生命周期的环境影响进行自

- 查,以便企业内部开展相关对比分析,发现问题。在生态设计管理、组织、人员等方面进一步完善。
- 5) 推进产业链的绿色设计发展,制定生态设计管理体制和生态设计管理制度,明确任务分工;构建支撑企业生态设计的核查体系;建立打造绿色供应链的相关制度,推动供应链协同改进。

被核查单位名称: 宁波力隆机电股份有限公司

地 址:宁波市北仑区小港街道安居路 228 号 9 幢 1 号

一、范围陈述:

1. 核查依据:

- 1) IS014064-3:2019 温室气体 -温室气体声明审定与核查规范及指南:
- 2) ISO/TS 14067:2018 温室气体产品碳足迹量化的要求和指南;
- 3) PAS 2050 商品和服务的生命周期温室气体排放评价规范;
- 4) 其他有关标准化团体或协议规定的准则。。
- 2. 核查范围:

按照 ISO/TS 14067:2018《温室气体 - 产品的碳排放量一量化的要求和指南》、PAS2050:2011《商品和服务在生命周期内的温室气体排放评价规范》的相关要求,本次碳足迹评价的边界为宁波力隆机电股份有限公司 2023 年1-12 月期间生产1件TJ10000TIS-B型不锈钢梯级的生产活动及非生产活动数据的碳足迹 (不包括产品及其他固体废弃物交付于下游客户的排放)。

二、结果陈述

宁波力隆机电股份有限公司生产1件TJ10000TIS-B型不锈钢梯级碳足迹为35kgC0₂eq。 宁波力隆机电股份有限公司产品生产过程中,碳足迹>0.2%的贡献识别清单为:原材料获取、运输、生产加工。它们对于GWP指标的贡献分别为90.07%、1.63%和8.30%。。 最终核定的碳足迹数据:生产1件TJ10000TIS-B型不锈钢梯级碳足迹为35kgC0₂eq。

浙江宏紀能源环境科技有限公司 2024年4月29日